The prefrontal cortex accumulates object evidence through differential connectivity to the visual and auditory cortices
Uta Noppeney, Dirk Ostwald, Sebastian Werner, Mario Kleiner
Talk
Last modified: 2008-05-13
Abstract
To form categorical decisions about objects in our environment, the human brain accumulates noisy sensory information over time till a decisional threshold is reached. Combining fMRI and Dynamic Causal Modelling (DCM), we investigated how the brain accumulates evidence from the auditory and visual senses through distinct interactions amongst brain regions. In a visual selective attention paradigm, subjects categorized visual action movies while ignoring their accompanying soundtracks that were semantically congruent or incongruent. Both, auditory and visual information could be intact or degraded. Reaction times as a marker for the time to decisional threshold accorded with random walk models of decision making. At the neural level, incongruent auditory sounds induced amplification of the task-relevant visual information in the occipito-temporal cortex. Importantly, only the left inferior frontal sulcus (IFS) showed an activation pattern of an accumulator region i.e. (i) positive reactiontime and (ii) incongruency effects that were increased for unreliable (=degraded) visual and interfering reliable (=intact) auditory information, which -based on our DCM analysis- were mediated by increased forward connectivity from visual regions. Thus, to form interpretations and decisions that guide behavioural responses, the IFS may accumulate multi-sensory evidence over time through dynamic weighting of its connectivity to auditory and visual regions.