Functionally Specific Changes in Sensorimotor Networks Following Motor Learning
David J Ostry

Last modified: 2011-08-22

Abstract


The perceptual changes induced by motor learning are important in understanding the adaptive mechanisms and global functions of the human brain. In the present study, we document the neural substrates of this sensory plasticity by combining work on motor learning using a robotic manipulandum with resting‐state fMRI measures of learning and psychophysical measures of perceptual function. We show that motor learning results in long‐lasting changes to somatosensory areas of the brain. We have developed a new technique for incorporating behavioral measures into resting-state connectivity analyses. The method allows us to identify networks whose functional connectivity changes with learning and specifically to dissociate changes in connectivity that are related to motor learning from those that are related perceptual changes that occur in conjunction with learning. Using this technique we identify a new network in motor learning involving second somatosensory cortex, ventral premotor and supplementary motor cortex whose activation is specifically related to sensory changes that occur in association with learning. The sensory networks that are strengthened in motor learning are similar to those involved in perceptual learning and decision making, which suggests that the process of motor learning engages the perceptual learning network.

Conference System by Open Conference Systems & MohSho Interactive